\(\int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx\) [193]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 240 \[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=-\frac {b c x^{2+m} \sqrt {d+c^2 d x^2}}{(2+m)^2 \sqrt {1+c^2 x^2}}+\frac {x^{1+m} \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{2+m}+\frac {x^{1+m} \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+m}{2},\frac {3+m}{2},-c^2 x^2\right )}{\left (2+3 m+m^2\right ) \sqrt {1+c^2 x^2}}-\frac {b c x^{2+m} \sqrt {d+c^2 d x^2} \, _3F_2\left (1,1+\frac {m}{2},1+\frac {m}{2};\frac {3}{2}+\frac {m}{2},2+\frac {m}{2};-c^2 x^2\right )}{(1+m) (2+m)^2 \sqrt {1+c^2 x^2}} \]

[Out]

x^(1+m)*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/(2+m)-b*c*x^(2+m)*(c^2*d*x^2+d)^(1/2)/(2+m)^2/(c^2*x^2+1)^(1/2)
+x^(1+m)*(a+b*arcsinh(c*x))*hypergeom([1/2, 1/2+1/2*m],[3/2+1/2*m],-c^2*x^2)*(c^2*d*x^2+d)^(1/2)/(m^2+3*m+2)/(
c^2*x^2+1)^(1/2)-b*c*x^(2+m)*hypergeom([1, 1+1/2*m, 1+1/2*m],[2+1/2*m, 3/2+1/2*m],-c^2*x^2)*(c^2*d*x^2+d)^(1/2
)/(1+m)/(2+m)^2/(c^2*x^2+1)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {5806, 5817, 30} \[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=-\frac {b c x^{m+2} \sqrt {c^2 d x^2+d} \, _3F_2\left (1,\frac {m}{2}+1,\frac {m}{2}+1;\frac {m}{2}+\frac {3}{2},\frac {m}{2}+2;-c^2 x^2\right )}{(m+1) (m+2)^2 \sqrt {c^2 x^2+1}}+\frac {x^{m+1} \sqrt {c^2 d x^2+d} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},-c^2 x^2\right ) (a+b \text {arcsinh}(c x))}{\left (m^2+3 m+2\right ) \sqrt {c^2 x^2+1}}+\frac {x^{m+1} \sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{m+2}-\frac {b c x^{m+2} \sqrt {c^2 d x^2+d}}{(m+2)^2 \sqrt {c^2 x^2+1}} \]

[In]

Int[x^m*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-((b*c*x^(2 + m)*Sqrt[d + c^2*d*x^2])/((2 + m)^2*Sqrt[1 + c^2*x^2])) + (x^(1 + m)*Sqrt[d + c^2*d*x^2]*(a + b*A
rcSinh[c*x]))/(2 + m) + (x^(1 + m)*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2,
(3 + m)/2, -(c^2*x^2)])/((2 + 3*m + m^2)*Sqrt[1 + c^2*x^2]) - (b*c*x^(2 + m)*Sqrt[d + c^2*d*x^2]*Hypergeometri
cPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, -(c^2*x^2)])/((1 + m)*(2 + m)^2*Sqrt[1 + c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5806

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]
/Sqrt[1 + c^2*x^2]], Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))
*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a,
 b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 5817

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x
)^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1
+ m)/2, (3 + m)/2, (-c^2)*x^2], x] - Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 + c^2*x^2]/Sqr
t[d + e*x^2]]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, (-c^2)*x^2], x] /; FreeQ[{a, b, c
, d, e, f, m}, x] && EqQ[e, c^2*d] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {x^{1+m} \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{2+m}+\frac {\sqrt {d+c^2 d x^2} \int \frac {x^m (a+b \text {arcsinh}(c x))}{\sqrt {1+c^2 x^2}} \, dx}{(2+m) \sqrt {1+c^2 x^2}}-\frac {\left (b c \sqrt {d+c^2 d x^2}\right ) \int x^{1+m} \, dx}{(2+m) \sqrt {1+c^2 x^2}} \\ & = -\frac {b c x^{2+m} \sqrt {d+c^2 d x^2}}{(2+m)^2 \sqrt {1+c^2 x^2}}+\frac {x^{1+m} \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{2+m}+\frac {x^{1+m} \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+m}{2},\frac {3+m}{2},-c^2 x^2\right )}{\left (2+3 m+m^2\right ) \sqrt {1+c^2 x^2}}-\frac {b c x^{2+m} \sqrt {d+c^2 d x^2} \, _3F_2\left (1,1+\frac {m}{2},1+\frac {m}{2};\frac {3}{2}+\frac {m}{2},2+\frac {m}{2};-c^2 x^2\right )}{(1+m) (2+m)^2 \sqrt {1+c^2 x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.75 \[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\frac {x^{1+m} \sqrt {d+c^2 d x^2} \left ((1+m) \left (-b c x+a (2+m) \sqrt {1+c^2 x^2}+b (2+m) \sqrt {1+c^2 x^2} \text {arcsinh}(c x)\right )+(2+m) (a+b \text {arcsinh}(c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1+m}{2},\frac {3+m}{2},-c^2 x^2\right )-b c x \, _3F_2\left (1,1+\frac {m}{2},1+\frac {m}{2};\frac {3}{2}+\frac {m}{2},2+\frac {m}{2};-c^2 x^2\right )\right )}{(1+m) (2+m)^2 \sqrt {1+c^2 x^2}} \]

[In]

Integrate[x^m*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

(x^(1 + m)*Sqrt[d + c^2*d*x^2]*((1 + m)*(-(b*c*x) + a*(2 + m)*Sqrt[1 + c^2*x^2] + b*(2 + m)*Sqrt[1 + c^2*x^2]*
ArcSinh[c*x]) + (2 + m)*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, -(c^2*x^2)] - b*c*x*
HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, -(c^2*x^2)]))/((1 + m)*(2 + m)^2*Sqrt[1 + c^2*x
^2])

Maple [F]

\[\int x^{m} \sqrt {c^{2} d \,x^{2}+d}\, \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )d x\]

[In]

int(x^m*(c^2*d*x^2+d)^(1/2)*(a+b*arcsinh(c*x)),x)

[Out]

int(x^m*(c^2*d*x^2+d)^(1/2)*(a+b*arcsinh(c*x)),x)

Fricas [F]

\[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int { \sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{m} \,d x } \]

[In]

integrate(x^m*(c^2*d*x^2+d)^(1/2)*(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)*x^m, x)

Sympy [F]

\[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int x^{m} \sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )\, dx \]

[In]

integrate(x**m*(c**2*d*x**2+d)**(1/2)*(a+b*asinh(c*x)),x)

[Out]

Integral(x**m*sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x)), x)

Maxima [F]

\[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int { \sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x^{m} \,d x } \]

[In]

integrate(x^m*(c^2*d*x^2+d)^(1/2)*(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)*x^m, x)

Giac [F(-2)]

Exception generated. \[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^m*(c^2*d*x^2+d)^(1/2)*(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int x^m \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \, dx=\int x^m\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {d\,c^2\,x^2+d} \,d x \]

[In]

int(x^m*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2),x)

[Out]

int(x^m*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2), x)